Dept. of Math. and Comp. Sc.

Final Examination

1. The region bounded by the curve $y = \sin x$, the lines x = 0, $x = \pi/2$, y = 0 is revolved about the line $x = \pi$. Find the volume of the resulting solid.

4 points

2. Identify the graph of the equation $25x^2 + 4y^2 + 50x - 16y - 59 = 0$. Find its centre, foci, vertices and sketch the graph.

4 points

3. Show that

(a)
$$\tanh\left(\frac{x}{2}\right) = \frac{\sinh x}{1 + \cosh x} \quad (x \in \mathbb{R})$$

(b) $\arcsin x + \arccos x = \pi/2$ (0 < x < 1).

2+3 points

4. Evaluate the following integrals:

(a)
$$\int \frac{5x^2 + x - 2}{(1 + x^2)(3x - 1)} dx$$
 (b) $\int \sqrt{\frac{1 - \cos x}{1 + \cos x}} dx$

(c)
$$\int \tan^2 z \sin^2 z \, dz$$

(b)
$$\int \sqrt{\frac{1-\cos x}{1+\cos x}} dx$$

(d)
$$\int (\arcsin x)^2 dx.$$

5 points each

5. Find the following limits if they exist:

(a)
$$\lim_{x\to\infty} x \ln\left(\frac{x+1}{x-1}\right)$$
 (b) $\lim_{x\to\infty} \left(\frac{\int_0^x \arctan t \, dt}{x}\right)$.

(c) Determine whether the improper integral

$$\int_{0}^{\infty} \frac{dx}{\sqrt{1+\sinh^{2}x}}$$

is convergent or divergent, and if convergent find its value.

3+4+4 points

6. Find the area of the region which is outside the curve $r = 2 + 2\cos\theta$ and inside the curve $r = 6 \cos \theta$.